Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide

Jason H. Karp, Eric J. Tremblay and Joseph E. Ford

Photonics Systems Integration Lab

University of California San Diego Jacobs School of Engineering

2-6 August 2009 San Diego, California, USA NanoScience+Engineering Solar Energy+Technology Photonic Devices+Applications Optical Engineering+Applications

August 4, 2009

Photo: Kevin Walsh, OLR

Concentrator Photovoltaics (CPV)

UCSD Photonics

- 1. Primary Focusing Optic
 - Performs light concentration
 - Large collecting lens or mirror
 - Trend towards multiple apertures

- 2. Secondary Homogenization Optic
 - Mounted between primary and PV cell
 - Uniform illumination for high efficiency
 - Non-imaging optical design

Xiaohui Ning, Appl. Opt. 26, 1987

- 3. Mechanical Tracking
 - Alignment for direct insolation
 - Angular acceptance defines tracking accuracy
 - Wind loading and environmental stability

Continuous Roll-to-Roll Fabrication

- Continuous roll-to-roll processing
 - Rigid or flexible substrates
 - Emboss, coat and bond layers
- Inexpensive mass-fabrication
- Constraints: Uniform thickness
 Limited complexity

Global Solar

Konarka

Roll-to-Roll for CPV?

Goal: Design a uniform thickness, high-flux solar concentrator compatible with continuous roll-to-roll manufacture

Coupling facets

Concentrated Output

Advantages:

- Sub-apertures couple light to single output
- Homogeneous output intensity
- Uniform thickness (roll-to-roll fabrication)

8/5/2009

Waveguide Coupling Facets

UCSD Photonics

- Reflective facets tilt light to satisfy TIR
- Couplers are localized at each lens focus (<1% surface area)

120^o Symmetric Prism:

UCSD Photonics

Coupling Facet Alignment

- Large area concentrators (~1 meter)
- >100,000 points of alignment
- <50µm lateral alignment accuracy
- <0.01° (0.2mrad) rotational alignment
 - Difficult over large area

Rotational Alignment

UCSD Photonic

VERY CRITICAL

Solution: Self-Alignment

- Mold prism structure within photopolymer
- Crosslink using UV exposure
- Cures only at each lens focus
 - Guarantees alignment

Crosslinked regions remain part of the final concentrator

Roll Processing Flowchart

UCSD Photonics

8/5/2009

Design Tradeoffs

UCSD Photonics

8/5/2009

UCSD Photonics

Richard R. King et al., "Advances in High-Efficiency III-V Multijunction Solar Cells," Advances in OptoElectronics, vol. 2007 (2007).

Spectrolab triple-junction cell

- 240x flux concentration
- 40.7% efficiency

Provide 240x flux per edge

System Simulation:

- Model overall efficiency
- Optimize design tradeoffs
- Cladding options

Analytic Model

UCSD Photonics

Simple mathematical simulation

- Scattering loss
- Material absorption
- Mirror reflectivity

Very promising, but incomplete...

Zemax Raytracing Model

UCSD Photonics

Zemax Non-Sequential Model

- Lens aberrations
- Polychromatic illumination
- Material dispersion
- Coatings and surface reflections

Broad Spectrum Performance

UCSD Photonics

Optimized using 0.425-1.3µm illumination

- Accurate range of material models
- Minimum bandwidth for multi-junction PV cells

8/5/2009

Proof-of-Concept Fabrication

Goal: Demonstrate self-aligned coupling facet fabrication

- Use off-the shelf components
- Lens Array: Fresnel Technologies
 - F/1.1 hexagonal lens array
 - 200µm image of ±0.25° source
 - UVT acrylic
- Waveguide: Fisher Scientific
 - Microscope slide (75mm x 50mm)
 - BK7 float glass
- Molding Polymer: MicroChem
 - SU-8 Photoresist
 - Chemical and thermal resistances
- Prism Mold: Wavefront Technology
 - 120° symmetric prisms
 - 50µm period, 14.4µm deep

Fabrication Process

UCSD Photonic

Fabricated Couplers

UCSD Photonics

20µm Depth

Prototype Alignment

- 6-axis alignment
 - Tolerance analysis

Lens Array

SUCCESSFUL COUPLING

Waveguide \rightarrow

- White light illumination
 Calibrated to ±0.25°
- Efficiency measurement

 Newport 818-ST wand detector

8/5/2009

Prototype Performance

- Zemax model of prototype concentrator
 - Include actual lens performance and coupler size
- Prototype uses off-the-shelf (non-ideal) components

UCSD Photonic

Prototype Loss Mechanisms

UCSD Photonics

• Lens F-Number

- -72.5% fill factor
- Spherical aberration
- Coupler annulus (50µm)

Coupler annulus

Good prism molding

- Coupler Fabrication Yield
 - Isolated instances
 - Trapped gas bubbles
 - SU-8 solvent removal

8/5/2009

Uniformity and Alignment Tolerance

Beam Uniformity

- Finite width contributes to non-uniformity
- Uniformity increases with system size

Lateral Alignment Tolerance

- 90% collection with 37µm shift (±1°)

125 150

175

Lateral Misalignment (µm)

- Alter UV source to add alignment tolerance

<10% Collection

Complete Misalignment

250 275 300

325 350

200µm Shift

225

UCSD Photonic

Lateral Alignment Tolerance

Solar Illumination Testing

8/5/2009

This research is supported by the National Science Foundation Small Grants for Exploratory Research (SGER) program

Thank You

Email: jkarp@ucsd.edu

Website: psilab.ucsd.edu